COVID-19

Coronavirus can spread through sewage systems, say experts

While the phrase may start to sound cliche, it still rings true! These are truly unparalleled times. The past few weeks have been nothing short of an immense change for all of us, leading us to adapt and change our lives and businesses to deal with the COVID-19 outbreak. 

With the lockdown being lifted in several countries, health officials all over the world are broadening the search for the people infected and focusing on slowing the spread. This includes finding all possible sources through which the virus can spread. When the response to the pandemic has been focused mostly on preventing community spread, Professor Quilliam and colleagues at the University of Stirling, recently released a paper warning that sewage system can play as a potential COVID-19 transmission risk and that it must not be neglected in this battle to protect human health. 

Can COVID-19 really survive in human feces or sewer systems?  POSSIBLY.

With years of studying the transport of bacteria in various marine environments, Professor Quilliam stated that “We know that COVID-19 is spread through droplets from coughs and sneezes, or via objects or materials that carry infection. However, it has recently been confirmed that the virus can also be found in human feces – up to 33 days after the patient has tested negative for the respiratory symptoms of COVID-19″. 

The authors explained that given the structure of COVID-19, specifically its lipid envelope covering, makes its behavior unpredictable in different aqueous situations. Though the information on COVID-19 environmental persistence is limited, from previous research it should be noted that other coronaviruses have known to survive in viable sewage for around 14 days. 

Should wastewater treatment plant operators take extra precautions? YES, BE SAFE!

The authors further added that there is a good possibility for the virus to aerosolize, particularly during the pumping and transfer of wastewater through different sewer systems. This could lead to atmospheric loading of the virus in the form of water droplets, giving it direct access to the respiratory tract of the people exposed. It must be acknowledged that people working at the sewage pumping stations or wastewater treatments are more at risk and need to be provided protective equipment. They must also be educated to seek medical care when showing any signs or symptoms. 

Areas with open sewage systems, especially in developing countries and places where safely managed sanitation systems are limited are high at risk. The authors further added that “Such settings are commonly accompanied by poorly resourced and fragile healthcare systems, thus amplifying both exposure risk and potential mortality,” 

Is this finding a possible breakthrough? MAYBE, MAYBE NOT.

The authors stated that “It is not yet known whether the virus can be transmitted via the fecal-oral route, however, we know that viral shedding from the digestive system can last longer than shedding from the respiratory tract. Therefore, this could be important – but as yet unquantified – a pathway for increased exposure.”

As the limited number of adequate testing in many places has made it difficult to keep pace with the quick-spreading virus, scientists believe that monitoring sewage for the virus will provide a cheap and reliable alternative. The experts further added that this removes the guesswork about when to impose local lockdowns — or when to lift them.

Though an interesting way to keep track of the virus, monitoring wastewater for the said virus is hardly an easy task. The approach poses many challenges, including deploying it on a large scale and winning the government’s approval. 

The authors concluded the paper by stating that In the immediate future, there needs to be an investment of resources to improve our understanding of the risks associated with the fecal transmission of SARS-CoV-2 and whether this respiratory virus can be disseminated by enteric transmission.

Source

Genetic variation in immune system may impact the severity of COVID-19

Genetic variation in immune system may impact the severity of COVID-19

Can your genes be the reason for increased susceptibility to COVID-19 infection? For years, scientists know that genes play a very important role in underlying biological mechanisms. And therefore, over these years many pieces of research have been carried to understand the link between genetic variability and diseases.  Recently, new research published in the Journal of Virology (Well-known publication of American Society for Microbiology) highlights that variation in the genes involved in the human immune system can impact the susceptibility and severity of COVID-19 infection.

Human Leukocytes Antigen Genes

You must have seen people of a certain group be more susceptible to disease than others, why? Well, the answer to this lies in your genes. Individual gene variation is known to be one of the major reasons behind the differences in the immune responses. Our immune system works with the help of multiple biomolecules. One such important component of the immune system that plays a very crucial role in determining the strength of the response is the human leukocyte antigen. The genes coding for this antigen is involved in detecting the pathogen upon invasion. The gene variation among different individuals can influence how well the immune system detects the pathogen in an individual. If a person has a weak response than a pathogen such as the Sar-CoV2 virus could easily invade making a person vulnerable to the infection.

Understanding the variation

As we all know that the number of COVID-19 cases is rising across the globe, researchers and scientist are working towards finding better solutions to curb the menace. In the present study, the author of the paper indicated the importance of understanding the variation of human leukocytes antigen (HLA), which forms a very important component of the immune system. Knowing the gene variants of HLA and their respective responses towards the condition can help identify people posing a higher risk towards the COVID-19 infection.

Antigen-Antibody complex

The researchers showed that the HLA, haplotype, and also the full genotype variation may impact the ability of an individual’s immune system to respond against Sars-CoV infection. Moreover, certain alleles can be responsible for more severe infections than others.

“This is the first study to report global distributions of HLA types and haplotypes with potential epidemiological ramifications in the setting of the current pandemic,” write the authors, from Oregon Health & Science University, Portland, and the Portland VA Research Foundation.

One of the important benefits of HLA based study is that HLA typing is quite fast and less expensive. If there is a pairing of HLA typing with that of COVID-19 tests than there can be a significant improvement in the identification of high-risk individuals. Moreover, once the vaccine against COVID-19 is available, high-risk HLA type individuals can be prioritized for the vaccination. This will help in creating herd immunity and help prevent the future spread of the disease.

FDA approves the first saliva test for COVID-19 testing

FDA approves the first saliva test for COVID-19 testing

With a rising death toll across the globe, researchers are looking for ways to develop highly effective detection tests for early diagnosis of COVID-19. Though there are tests based on the nasal swabs, other alternative methods like saliva-based tests can prove to be highly robust. In light of this, scientists have created an easy test that uses saliva instead of the nasal swabs as a sample.

The US Food and Drug Administration approved the first saliva test for COVID-19 testing for emergency early this month, which can be used as an alternative to existing tests.

“Considering the high transmission rates of coronavirus and rising cases, it is very crucial to have all types of testing options to carry out as much testing as possible in any form. The only way one can prevent the spread of coronavirus virus is by mass testing and self- isolation”, said by one of the researchers working on infectious disease and pandemic preparedness at the Johns Hopkins University.

Why lookout for alternatives?

Presently, COVID-19 testing involves the use of nasal swabs based tests where health professionals need to insert a swab into each nostril, reaching out at the back of the nasal cavity where the nasopharynx is located. The swab is gently scraped over the tissues to collect the sample and later sent for the analysis. Though the present method is robust, it proved to be very cumbersome to an extent. The nasal swab based testing requires highly professional health practitioners to perform the sample collection. In the present time where we are facing the shortage of healthcare professionals, the nasal swabs based tests increase the burden further. Moreover, extra precautions are needed to carry out this test, which includes wearing fresh gloves, personal protective equipment, and face shield that are in short supply.

On the other side, the collection of saliva samples is quite easy and can be performed by any individual without the requirement of expertise.  Saliva tests have been used in the market for the various genetic tests and are quite common to people. The process involves thoroughly cleaning the hands and spitting the saliva sample into the collection tube up to the mark indicated. The entire process is very easy and doesn’t require a large number of safety requirements such as PPE. However, as per the recent guidelines shared by Food and Drug Administration (FDA), saliva-based testing will still be carried out in the healthcare setting under the guidance and supervision of expert & qualified healthcare professionals.

Saliva testing – a robust alternative

“Saliva testing will help with the global shortage of swabs for sampling and increase testing of patients, and it will not require health care professionals to be put at risk to collect samples,” Andrew Brooks, the chief operating officer of RUCDR Infinite Biologics, a biorepository backed by Rutgers University that developed the spit test, explains in a statement.

The saliva-based testing uses TaqPath Sars-CoV2 Assay which is used in existing coronavirus tests for identifying the viral RNA. Scientists shared that apart from identifying the potential carriers of the COVID-19 virus, the present saliva-based testing can help in re-testing the people who have shown recovery to help them end the self-isolation.

Way ahead

To assess the robustness of the saliva-based test for COVID-19 detection, researchers collected 60 samples from COVID-29 patients using the saliva swab tests. The results for Sars-CoV2 RNA in these saliva samples showed the same results as conventional nasal swab based tests taken from the same infected patients. This highlights the robustness and effectiveness of saliva as high as a nasal based test without any false-negative results.

The first line of treatment for COVID-19

The first line of treatment for COVID-19

As the number of cases of COVID-19 is increasing worldwide, researches has been carried out rigorously across the globe to curb this inflection to some extent and providing the first line of treatment with existing drugs. A coalition of European researchers has published in the International Journal of Infection that existing approved drugs can help in combating new viruses and help the patients to survive through viral infections.

According to WHO, the coronavirus has symptoms like fever, runny nose, sore throat and cough in the beginning.  In severe cases, for some people, it can lead to pneumonia or breathing problems. It can be even fatal if initial precautions are ignored. More vulnerable are people with medical conditions like diabetes and heart diseases.

Can drug repurposing help?

Drug repurposing  (Drug repositioning, re-profiling, etc.) is the use of an approved drug for the treatment of another disease by generating additional value. Drug repurposing can be a good option until some treatment or vaccine for COVID -19 is discovered.  Many such potential drugs are under testing to see their effect on overcoming the menace of coronavirus. Some of the approved drugs include Teicoplanin, Oritavancin, Dalbavancin, and Monensin, which has shown efficient response in curbing the infectious coronavirus symptoms in the laboratory.

Is drug repurposing a good option?

As the task of drug repurposing is to take out additional value from already approved drugs, the drug development details, chemical synthesis process, manufacturing process and information regarding different phases of clinical testing are already known. Moreover, they have translational opportunities such as the high probability of success to market compared with developing new drugs or vaccines and significantly reduced cost and timeline to clinical availability.

Development of BSSAs (Broad Spectrum Antiviral Agents) 

Broad-Spectrum Antiviral Agents are the drugs that target viruses from two or more different viral families. Nearly 120 drugs are found to be safe for human use and a database is created which is freely accessible. Thirty-one of these are a possible candidate for prophylaxis and treatment of the COVID-19 infection. Five possible drug candidate is under clinical investigation to treat the virus that causes COVID-19.

Way ahead

BSAAs will have a global impact in the future by decreasing morbidity and mortality from viral and other diseases, maximizing life expectancy, improving quality of life and decreasing costs of patient care.  As no concrete treatment is there in place to cure COVID-19, the mentioned discoveries and researches portray hope as a potential step towards overcoming achieving victory against COVID-19.

Humans have salamander-like ability to regrow cartilage in joints

Humans have salamander-like ability to regrow cartilage in joints

Recently, scientists at Duke Health have discovered that unlike popular belief, human cartilage have a tendency to repair on its own through a process of limb regeneration similar in salamander and zebrafish. The research has been published in the journal of Science Advances on Oct 9.

Researchers found that the mechanism of the self repair was more robust in ankle joints in comparison to hips. These findings have paved a new path for developing effective treatment methods for osteoarthritis and other associated diseases across the globe.

“We believe that an understanding of this ‘salamander-like’ regenerative capacity in humans, and the critically missing components of this regulatory circuit, could provide the foundation for new approaches to repair joint tissues and possibly whole human limbs,” said Virginia Byers Kraus, M.D., Ph.D., (Senior author).

Taking a closer look

To understand the entire mechanism of limb regeneration the researchers focused on studying the age of certain proteins. For this, they analyzed the internal molecular clocks integral to amino acids, which convert one form to another. This conversion was quite predictable which helped scientists to establish further details.

They found that newly created protein had very less or no amino acid conversion while the old proteins had many. Using mass spectrometry they analyzed whether these proteins in human cartilage were young, middle-aged or old. Studies showed that the age of cartilage is mainly dependent on its location in the human body. For example, cartilages in the ankle area are found to be young, in kneed its middle age, wherein hips area it was quite old.  This correlation between the location and age of the cartilage indicates how limb regeneration and repair occur in some organisms, wherein the apex parts o the body such as tails or legs showed rapid regeneration. Additionally, it also explains why people with knee or hip injury take more time to recover in comparison to an ankle injury which recovers quicker.

To understand the process in detail, researchers tried to study molecules like microRNA involved in this process. They observed that the microRNA were more active among animal well known for their limb regeneration activity such as lizards, fish, salamanders and more.

These microRNA are also known to be present in humans, offering natural competence of tissue repairs. It is higher in the top layers of cartilage in comparison to the deeper layers.

“We were excited to learn that the regulators of regeneration in the salamander limb appear to also be the controllers of joint tissue repair in the human limb,” Hsueh said. “We call it our ‘inner salamander’ capacity.”

The researchers said microRNAs could be developed as medicines that might prevent, slow or reverse arthritis.

“We believe we could boost these regulators to fully regenerate degenerated cartilage of an arthritic joint. If we can figure out what regulators we are missing compared with salamanders, we might even be able to add the missing components back and develop a way someday to regenerate part or all of an injured human limb,” Kraus said. “We believe this is a fundamental mechanism of repair that could be applied to many tissues, not just cartilage.”

Scientists Help Immune System Find Hidden Cancer Cells

Scientists Help Immune System Find Hidden Cancer Cells

Cancer is a widely studied topic in bioscience research but yet remains to be mostly unknown and difficult to treat. However, the recent developments in cancer research over the past decade have helped the scientific community to come up with effective treatment methods. But still, one of the most common problems faced in treating cancer cells is difficulty in locating them for efficient targeting. Recently, scientists from Yale University have developed a new system that can help our immune system find the hidden cancer cells and kill them. The research has been published in Journal Nature Immunology.

Why this study holds importance?

It is a known fact that there exists a number of immunotherapies for treating cancers. But these therapies have certain shortcomings as they either don’t work on all patients or are inefficient in different cancer types. The major reason behind this is the failure of these therapies in identifying the cancer cells which reduces their effectiveness. This highlights an urgent need for a more targeted approach that can help curb the menace of cancer.

The development of a new system by scientists in the present study is considered to overcome the drawbacks of the earlier immune therapies. Researchers report that upon testing the new system in mice it has shown positive response against the melanoma, triple-negative breast, and pancreatic tumors, even for those tumors which are situated at a distant location from the primary tumor.

“This is an entirely new form of immunotherapy,” said Sidi Chen, senior author.

How the new system – MAEGI works?

The researchers developed a new system to target the cancer cells which combines the viral gene therapy and CRISPR based gene-editing technology. Unlike the traditional method of searching and making edits at the DNA level by incorporation of new genes, the present system uses a much more targeted approach.

The new system named as MAEGI stands for Multiplexed Activation of Endogenous Gene as Immunotherapy. This system works by searching numerous cancer-causing genes, marking their location by mimicking GPS and subsequently intensifying the signal of these locations for precise targeting.

For instance, you can consider that the new system dresses up the tumor cells in a unique manner that can be easily identified by the immune system of our body and eventually eliminate them. For this, the cold tumors cells lacking any immune cells are converted into hot tumors cells which are packed with tons of immune cells.

“And once those cells are identified, the immune system immediately recognizes them if they show up in the future,” Chen said. The new system, in theory, should be effective against many cancer types, including those currently resistant to immunotherapy, he said.

The researchers will be further optimizing this system to make the manufacturing process easier. Once optimization is done it will be subjected to clinical trials in potential cancer patients.

No wonder that cancer is a rising menace in the present world. Though many therapies are available we still need highly effective methods to treat cancer. The development of the immunotherapy-based system has given rise to a ray of hope for a more effective and proficient treatment that not only treats primary tumor cells but also the distant ones. Let’s look forward to this new development and hope for the best outcomes in subsequent clinical trials.

Source 1

Source 2

Mucus is more just than a physical barrier for microbes

Mucus is more just than a physical barrier for microbes

Do you know that the mucus in our body has a much greater role to play than just forming a physical barrier for microbes? Recent research by scientists at MIT reveals that the glycans in mucus can hinder communication between microbes rendering them harmless by forming an infectious biofilm.

The researcher Katharine Ribbeck has been studying the underlying biochemistry of mucus for over a decade. “Mucus piqued my interest because it is just this vastly understudied material that occupies a large surface area in our body,” – Ribbeck.

On average, a person produces a liter of mucus every day, which is used by our body to protect against harmful microbes. Mucus lines numerous organs in our body such as digestive tracts, urinary tracts, and lungs. It acts as a lubricant and physical barrier blocking the microbial invasion.

The study focuses on unwinding the role of mucins in mucus. Mucins are proteins densely packed with chains of sugar. Till date, very little research has been done in this area. This highlights the importance of the present study as it lays the foundation for further studies to understand the role of mucus in our body.

Unwinding the role of glycans

The scientists were very much interested in understanding the role of glycans in regulating microbial behavior. These glycans are known for attaching to proteins known as mucins, responsible for the characteristic gel-like nature of the mucus. To gain deeper insights scientists subjected the isolated glycans against Pseudomonas aeruginosa, which is a pathogen causing infection among people with compromised immune system. The findings showed that the mucin glycans rendered the microbes to become less harmful by altering their behavior. For example, the microbial cells didn’t show any toxin production, killing of host cells or attaching to the surface of host cells, and expression of genes playing a role in bacterial communication. Researchers further supported their finding by showing the role of mucin glycans in reducing the bacterial proliferation in Pseudomonas infected wounds.

Future prospects of the discovery

The present study has unraveled the important role of mucus in overcoming the bacterial infection. To take this ahead, researchers are now looking forward to developing artificial mucus which can provide new insights to treat diseases and infections stemming from mucus. The researcher (Ribbeck) said, “Harnessing the powers of mucus could also lead to new ways to treat antibiotic-resistant infections because it offers a complementary strategy to traditional antibiotics”.

“What we find here is that nature has evolved the ability to disarm difficult microbes, instead of killing them. This would not only help limit selective pressure for developing resistance because they are not under pressure to find ways to survive, but it should also help create and maintain a diverse microbiome,” – Ribbeck

Source

Cancer causing mutation in Dark Matter of genome

Cancer causing mutation in Dark Matter of genome

According to the World Health Organisation (WHO), cancer is one of the major leading causes of death worldwide. The statistics show 9.6 million deaths in 2018 due to cancer, showing how severe is the issue globally. This highlights that the development of new research in cancer to overcome its perils is an urgent need of time. Recently, an Ontario based research group has carried out breakthrough research which can change the way cancers were targeted. They have discovered novel cancer-causing mutation in the non-coding region or junk region of the genome which is also referred to as the “dark matter”. Two related studies dealing with the identified mutation have been published recently in Nature.

“Non-coding DNA, which makes up 98 percent of the genome, is notoriously difficult to study and is often overlooked since it does not code for proteins,” – Dr. Lincoln Stein, co-lead of the studies, Head of Adaptive Oncology at the Ontario Institute for Cancer Research (OICR)

How new mutation can help target cancer

In the present study, scientists have identified a mutation in U1-snRNA (small nuclear RNA) which can be used to target cancer. U1-snRNA is known to play a role in tele-scripting wherein it suppresses the polyadenylation process and premature cleavage of transcripts making them available whenever a cell needs. The regions of DNA containing polyadenylation signals are sheltered by U1-snRNA to protect the nascent transcript, allowing the transcription process to continue. Any mutation in U1-snRNA will significantly alter its functioning leading to conditions like cancer.

“By carefully analyzing these regions, we have discovered a change in one letter of the DNA code that can drive multiple types of cancer. In turn, we’ve found a new cancer mechanism that we can target to tackle the disease.” – Dr. Lincoln Stein

The study shows that this mutation can disrupt the RNA splicing process, which will hinder the transcription of cancer-causing genes in the human genome. This provides a completely new approach to targeting cancer that can help in developing new treatment methods.

One of the potential treatment methods is to retune the use of existing drugs. This will help in bypassing the several stages of early drug development processes, making research available for clinical trials at a fast pace.

Further studies revealed that U1-snRNA mutation is present in a wide range of cancers such as subtypes of brain cancer, medulloblastoma, chronic lymphocytic leukemia (CLL) and hepatocellular carcinoma. Besides this, the presence of U1-snRNA mutation has been implicated in several other diseases involving misfolded protein. This signifies the important role of U1-snRNA and its mutation in the transcription process and the potential it holds to develop methods for subsequent cancer targeting.

“Our unexpected discovery uncovered an entirely new way to target these cancers that are tremendously difficult to treat and have high mortality rates,” – Dr. Michael Taylor, co-lead of the studies.

“We’ve found that with one ‘typo’ in the DNA code, the resultant cancers have hundreds of mutant proteins that we might be able to target using currently available immunotherapies.”

“This discovery is an example of how OICR is working together with partners in Ontario and across the world to support cutting-edge research that can be used in the development of precision therapies for cancer patients worldwide,” says Dr. Laszlo Radvanyi, President and Scientific Director of OICR.

Aspirin can reduce air pollution effect on lungs

Aspirin can reduce air pollution effect on lungs

Aspirin is widely used for treating headaches but do you know it can also have functional value in relieving your lungs from pollution damage? Recent research by scientists from Columbia Mailman School of Public Health, Boston University School of Medicine and Harvard Chan School of Public Health has revealed the potential aspects of aspirin in reducing the impact of pollution on lungs. The research has been published in the American Journal of Respiratory and Critical Care Medicine.

Pollutants in the air can harm your body by causing severe damage to the lung cells. This mainly includes inflammation and irritation in the cells which can become more serious if not taken care of. It does make sense now why researchers choose aspirin as an agent to curb the menace of pollution. Aspirin is a non-steroidal anti-inflammatory drug (NSAIDs) which has a defensive effect in response to inflammatory reactions in the body.

In the present research, scientists collected the data of more than 2000 male veterans belonging to the Boston area with an average age of 73 years. The functionality of the lungs of this cohort was evaluated to gain better insights for further comparative analysis (since 1960). Moreover, the data for air pollution was also analyzed (since 1955) regularly.

Researchers compared the functionality of the lungs of volunteers under the influence of NSAIDs and those who are not. They observed that the group with exposure to NSAID showed the reduced impact of particulate matter and black carbon on the lungs in comparison to those without NSAID administration. The study also considered other factors such as the health of the volunteers and smoking habits to come up with precise result analysis. The results were found to be consistent throughout the study sessions for all weekly air pollution measurements from the initial day of inspection until the day of the lung function test.

Researchers found that most of the volunteers consuming NSAID mainly used aspirin. This highlights the improved response observed among volunteers can be contributed by aspirin. However, other non-aspirin NSAIDs can also be explored to understand the overall effectiveness and association with a lung condition.

“Our findings suggest that aspirin and other NSAIDs may protect the lungs from short-term spikes in air pollution,” says corresponding author Xu Gao, a scientist in the Department of Environmental Health Sciences at the Columbia Mailman School. He added, “Of course, it is still important to minimize our exposure to air pollution, which is linked to a host of adverse health effects, from cancer to cardiovascular disease.”

The findings support the use of aspirin in overcoming the harm caused by pollution to the human lungs. Though the exact mechanism of working is not yet known, the study paves the path for the researcher to speculate and evaluate the role of NSAIDs in overcoming the inflammatory responses due to severe pollution exposure. Further detailed studies are needed to evaluate the impact and understand the mechanism at a molecular level.

Source